Titre : |
Numerical and Experimental Study of Heat Pipes Used in Solar Applications |
Titre original : |
Étude numérique, par la méthode de Boltzmann sur réseau, et expérimentale des caloducs utilisés dans les applications solaires |
Type de document : |
thèse |
Auteurs : |
Kods GRISSA, Auteur ; Yves BERTIN, Directeur de thèse ; Abdelmajid JEMNI, Directeur de thèse ; Adel, Mustapha BENSELAMA, Directeur de thèse ; Institut PPRIME UPR CNRS 3346 - FTC, Commanditaire ; Abdulmajeed A. MOHAMAD, Rapporteur ; ZAGHDAOUI, Mohammed, Chaker, Rapporteur ; Souad HARMAND, Examinateur ; Ezeddine SEDIKI, Examinateur |
Importance : |
236 p. |
Note générale : |
NNT 2018ESMA0012
Acknowledgements
Table of Contents
List of Figures
List of Tables
Nomenclature
Introduction
Appendices
Bibliography
|
Catégories : |
Caloducs Développement durable Energie solaire Matériaux poreux:Fluides, Dynamique des Modélisation CFD Transfert de chaleur
|
Résumé : |
GENERALITIES AND STATE OF THE ART
Historical Developmemnt and Background of Heat Pipes
Heat Pipe Working Principal
Heat Pipe Construction
The Physics of Heat Pipes
Heat Pipe Applications Types of Heat Pipes
Heat Pipes Cycle and Operating Limits
A Focus on Heat Pipe Application in Solar Thermal COllectors
Conclusions
LATTICE BOLTZMANN METHOD
Background and Basics of Lattice Boltzmann Method
Advantages of Lattice Boltzmann Method
The Different Approaches
Formulation
Initial and Boundary Conditions
Lattice Models and Isotropy
Unit Conversion
Lattice Boltzmann Algorithm
Conclusion
AXISYMMETRIC LATTICE BOLTZMANN MODEL FOR FLUID FLOW THROUGH POROUS MEDIA
Axisymmetric models
Axisymmetric Lattice Boltzmann Equation for FLuid Flow Through Porous Media
Lattice Boltzmann Boundary COnditions
From Lattice Boltzmann Equation to Balances for Axisymmetric Fluid Flo Through Porous Media
Model Variation
Enhanced Axisymmetric Model
Conclusion
NUMERICAL ANALYSIS OF THE HEAT PIPE
Heat Pipe Modeling Using Lattice Boltzmann Method
Numerical Analysis of A Wicked Heat Pipe
Numerical Study of Heat Pipe Performance Used in Solar Applications
HPETSC Thermal Analysis
Energy and Exergy Analysis
Conclusion
EXPERIMENTAL ANALYSIS OF HEAT PIPE
Heat Pipe Design
Instrumentation
Data Acquisition and Control Devices
Measurement Uncertainty
Heat Pipe Filling
Test Cases
Latin Hypercube Sampling Method Applied to Experimental Design
Results and Discussion
The Optimum Solution in Solar Collector Situations
Conclusion
CONCLUSIONS
Summary
Notable Findings |
En ligne : |
https://tel.archives-ouvertes.fr/tel-02006392 |
|